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RADIATION PATTERN OF RAYLEIGH WAVES FROM A FAULT OF
ARBITRARY DIP AND DIRECTION OF MOTION IN A

HOMOGENEOUS MEDIUM

By N. A. HASKELL

ABSTRACT "

Expressions for the displacements in the 'body waves radiated in aa unbounded, homogeneous
elastic medium by dipolar point sources of arbitrary orientation may be readily derived in
Cartesian coordinates from formulae given by Love. The free-surface boundary conditions
are, however, most conveniently expressed in terms of Sezawa's cylindrical wave functions.
The necessary transformation between the two representations is provided by the Sommerfeld
integral and; others that may be derived from it by differentiatirns with respect to the radial
and axial (vertical) coordinates. By this means the, total radiation field (direct plus surface
reflected) is 'expressed: in terms of integrals of cylindrical wave functions. The Rayleigh wave
component may then be separated out by calculating the residue at the Rayleigh pole of the
integrand. The azimuthal rdependence of the Rayleigh wave displacements appears as the sum
of three terms, one independent of the azimuth angle, 4, another depending upon sin 0 and
cos 4, and a third depending upon sin 24 and cos 24. The coefficients of these terms are func-
ti * ons of the direction cosines of the normal to the fault plane-and the direction of the relative
displacement vector in the fault plane. Equations are presented "or sources of both single and
double couple types. The effect of fault propagation with finite velocity over a finite distance
may be included by multiplying these-expressions by the finite source factor previously derived
by Ben-Menahem.

Polar plots of the amplitude and initial phase are pre~sc'nted 'for single and double-couple
representations of a number of different types of faults. It is noted that for one certain orien-
tation a shallow double-couple source generates no Rayleigh waves.

INTRODUCTION

Ben-Menahem (1961) has recently treated the radiation of seismic surface

waves from moving single-couple sources representing dip-slip and strike-slip-
faults. The case of arbitrary direction of motion in the fault plane can be treated by

resolving the displacement into dip-slip and strike-slip components and superim-

posing the solutions for these two special cases, but it is also possible to derive
general expressions, allowing the normal to the fault plane and the direction of
motion in the fault plane to be arbitrary orthogonal vectors from the beginning,
which will exhibit the dependence of the radiattion. pa~ttern on these vectors some-
what more explicitly. We shall begin with a representation of the elastic wave

radiation field of point sources in terms of spherical wave functions' in Cartesian

coordinates and then, by means of the Sommerfeld integral and its derivatives,
transform this into a representation in terms of cylindrical wave functions. The

free-surface boundary conditions are then imposed and 'the Rayleigh wave com-

ponents are separated by taking the residues at the Rayleigh pole.

CARTESIAN REPRESENTATION OF DIPOLAR POINT SOURCES

In tensor notation the elastic wave displacement vector with Cartesian com- A
ponents ui, due to a point force with components Fj(t) may be written (Love,
1944) in. the form

619
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47rpu= R3 (3"i-yj - bij)4 t'Fj(t - t') dt' + yiy 1 Fj(t - R/a)/la'R

- - 3jj)Fj(t - R/I/•!O) R

The convention of summation over repeated dummy indices is to be understood
and the following notation is used:

p = density
a = compressional wave velocity

= shear wave velocity
yj = direction cosine of line from source to field point

= (xi - xi')/R

xi = Cartesian coordinate of field point
xi' = Cartesian coordinate of source
R = radial distance of field point from source

baj = 0, i O j
= 1,i =j

Following Keilis-Borok (1950), equation (1) may be written in a more symmetrical
form by introducing the second integral of the force, J(t), i.e., F(t) = J"(t). The
integral may then be evaluated and equation (1) becomes

42rpui = (3-yjj - 5j,)Jj(t - R/2)/R8 + (3-yij - bi 1)Jj'(t - R/a)./aR2

"+ _y'jJj/(t - R/a)/b2 R -[( 3 ,yj - Bi1)Jj(t - R/I)/R' (2)

+(3 m'sy - Bj J3 '(t - R/,3)/3R ~ + -j i - )J1
1'(t - R/f#)/13R]

To obtain the displacements due to dipolar point sources, we need the first deriv-
atives, ui.• = Ou/Oxtk. From the definitions we have OR/Oxk = 'k, 06yi/Oxk =
(Sik - -",7k)/R, and aJ3 (t - R/a)/Oxk = -- yAJj'(t - Rla)la. Using these rela-
tions we find

47rpuj.ý = J,(t - Rla) [3(vy53k + 7jbik + -- kbji) - 15yi]yj-yk/R'

+ J,'(t - R/a) [3(-.yj8 + -J.Bi + •,•ij) - 15-yijyk]/aR'

+ Jf"(t - R1.) [-Yi81 k + Tji + ykbij - 6,-yr-yK]/a2R`

- J/"(t - R/a)YiY,-Yk/a R

(3)
- J,(t - R/O) [3(y•~5.k + "y'.k + 7kbij) -- 15,y-yk]/R 4

- J/ (t - R/O) [3 (Q'3jk + yjaik. + ',k'ij) - 15WYJ-Y,./]3R

- J' (t - R/lf) [yyjk + yjbik + 2
7k'aij - 6'y 3f,-y.j]/3 2R2

+ Jj"'(t - R/1,) [yiy,-2 yk - ykal]/pýR
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We now assume that Jj - - (f1/cO2 ) exp (icot), where fj is a unit vector in the
direction of Fj , so that Fj = J = fj exp (iwt) for a couple of unit moment.
Omitting the common time factor,_.equation (3) becomes

47rpuik = f.R-' exp (-iwR/a)"[(3/R3) (7i8g, - YJbAk + ykbi - 5'fi'1,k)

"+ ( 3iw/cx 2) (-y6,+ -"jIA + '+ Tii -- 57yy.k)

* + (co2/aR) (6-yyyk - "y k -- "y-j$ik- "y7kij) + (iw3/a 3)y',jyk] (4)

+ fjR-' exp (-iR/f3)[(3/R') ('yjajk + y'Yk + Ykbij - 5&iY)Yk)

+ (3&w/1#R)(,'i8jk + I.tk +'Mj -kJ 5'Yin1'k)

+ (y 2/'R) (6yj' - -y'i - 2'yj8ý) + (iw/l 8 ) (-yiyj'y - ykbij)]

Let nj be a unit vector normal to the fault plane. We shall, consider only shear
faults, Le., no component of displacement normal to the fault plane, so that n, and
f• are orthogonal vectors. The displacements due to a single-couple source ,whose
orientation is specified by the vectors n i and, fj are 'then

ui = -14,knk (5)

From equation (4) and the orthogonality condition, nji = 0;, the displacements
reduce to

47rpui =- F,[niCf{ (3/R') + (3iU/41R) - (w./a 2R)

+ ]CC1 (3/R3) + (3•/ • - (,ý/a )}Fj +C f (15/1R') "+ (15i•/aR2 -6w /a2R) - (iwi/aa) } (6

I ~(6)'
-- F#[niCfj (3/R') -+ (3ion/fiR2) -(W212R)}I

f + ffC,{ (3/R 3) + (3ic/f3R 2 )- (2 I/fR) - (ico3/#)

- ";CC,,{ (15/R') + (15ico/#R 2) - (6 2/#R) - (i<,3/#) ]

where

Fa = R-' exp (-iwR/a)

Sexp (-iwRIO)
(7)

Cf = yjfj

C.= 'Ykfk

1,

ki*
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TRANSFORMATION TO CYLINDRICAL COORDINATES AND WAVýE FUNCTIONS

Equation (6) is now to be transformed into a cylindrical coordinate systemi
(r,. z, €) with origin at the source.

r = [(X1 - x1')' + (x 2 -,')2,y

Z X3 - X3'

cos4 = (xi - xj')/r

In terms of these coordinates and the spherical distance, R, the direction cosir;es
,y• are

7 = (r!R) cos k

72 = (r/R-) Sin€ (8)0

73 = zIR

and the cylindrical components of the displacement (ut, u., u6) are

u, = (R/r) (Tyul + ',2u2)

u' = U(9)

uo = (Rl/r) (YIu2 - Y2U)

The scalar products C, and C. become

Cf = R-'(rfi cos 0 + 2-f2 sin e + f3z) (10)

= (rni cos 0/ + Mn2 sin 0 + n3z)

Using the orthogonality of fj and ni , their product may be written

CiC =(r
2/2R) [(fxn1 - f2n2) cos 20 + (fin2 + f 2n,) sin 26]

+ (rz/R 2) [(fjn 3 + f3n1) cos A + (f2% + fQn2) sin 0] (11)

+ f3n3[(z/R)2 
- (r/R)2 /2] (

It will be convenient to collect terms according to their dependence on the azimuth
angle, .0, by writing

Ur = U•° u + U u+ Ur (12)

I.. _____ ___________________ ___________________,,___
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and sirnilar expressions for u. and u• , where the terms with superscript (0) in-
chlide those independent of 0, the (1) term are those depending on sin 0 knd cos 0
and the .(2) term are those depen.-iing, on. sin 24 and cos 20. When this separation is
carried out, it is; found that the coefficients of the various angular functions can
be expressed in terms of the derivatives up to the third order of the functions
F. and 1pý with respect to r and z, for example,

OFl/Or = -(rFd/R):(R-' + iwo/•

Oft laraz = (rzFa,/R 2) [(3/R2) + (3iw/aR) -- (WI/a")]

etc. The algebra is straightforward but tedious and". we, give, only the final results:

47rPu,1 0) = (fana/2) [3FI/OrOz2 
+ (wa)2( OFýa/Or) - 3p3Fp/Oroz2], (13)

47rpu,(1) = cos 4-[(f/n 3 - jf•).(aT&FlOr2'Oz - a3F/aor2Oz) - fAn 3(WMt) 2 Ilf/Oz]
(14)

+ sin 0[(f2na + fan 2 ) (O8Fal/Oaoz - OaFp/or2Oz)- f2yn•(W/) 2 OaF/Oz]

47rpurw = (1/2) [(fin, - f2n2) cos2 4 + (fln2 + f2n1 ) sin 24] [2OaFa!0r'

((15
± O8Fa/Or8z2 +4 (c'/a•) 2OFa/Or -- 2O8Fp/ar3 

- OaF,•/OrOz2 
-- 2(w/t3) OF•/Or]

4rpu•!°) = (f3na/2) [3a0Fa/oz -+ (&/a).OFa/az - 3a'Fp/Oz' - 3(w/3)'OFJOz] (16)

(uj) = cos 0[(fjn3 + fan,) (O&F•9/r0z' -2 F•/DrOz2) - f•ni(,0/#) 2aF#/Or]
(17)

-- sin o[(f 2na + fan2 ) (.9f4/OrOz, -- OaF,/OrOz2) - fana(W/1) 2aOF/Or]

47rpu (2) = (1/2) [(fin. - f 2n2) cos 2t- + (fin2 + f 2n,) sin 24][2a 3F/Or2aOz
(18)

+ 63Fl/Oz8 + (co/a)2OF,/Oz - 2OaFp/Or2Oz - OaFI/Ozz'- (w/3) 2OFI/Oz]

4irpuo() = (1/2) (finz - f2na) (wl/).WOFl/Or (19)

41rpuo' = cos 0[(f2n2 + fana) (8oT./rOrOz - aoFf"f6'raz) - f'3(C0/#) 2aF,/Oz]
(20)

- sin 4[(fin3 + fan1 ) (-92Fa/rOrOz - OsF7/rOraz) - fina(3 ./) 2 OF/azj

4arpuoi) = (1/2) [(fp'a + fAn1) cos 240 - (f~ný - f2 n2 ) sin, 24,][-28aFs/Or2

(21)
- 203F./OrOz2 - 2 (w/a)2 OF.)r -+ 20oFplar8 -+ 20 FP/aOzi2 + (./1) 283F5 1Or]

The above expressions for the displacements, although expressed in cylindrical
coordinates, still involve the spherical wave functions F., and F0. In order to
complete the transformation into a Cylindrical wave representation we use the
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Sommerfeld integral (Ewing, Jardetsky, and Press, 1957 pp 13 and 14) for F,,

and Fg.'

Fa -1 ex-p (-icoR/4) Gof Jo(_kr)'e~"z1 (k/v.,).a4k (22) - I
where

j+-/k - (w/a,)2 
kc > co/a

= iVj(w/a)Y - k2 k< a

Calculating the indicated derivatives and using the recursion relations for the
Bessel functions, the various displacement components for z > 0 are as follows-:

47. = (f, na/2) f Ji(kr)'[3vp e_' - (3v, w/vae~1 2 k (23)'

41rpu,10 )' = (f~n3/2) jJo(kr)[{2(./a)ý - Wk)e-y~z + 3k 2 e-v]k dA (24)

47rpuo (0) = (l/2)(f2 ni - fin2 ) (C/#.)2 J,(kr)e-''(k2/vp) dk (25)

4arpu,~' =Cos 0 f 3+f'l., o(r e" Cf)k3dA

J, J(1r) (e~v - e0z) k' dk} + fn 3 (W/#)2f Jo(1r)e'Ok dl
(26)

+ sin 0 [(f 2 n3 + f0n2) fJo (kr) (e" - evfz) k3dlA

r- 1f Ji(kr)(ev-z - e-'#V)k2 d\7 +. 2 n 3 ~ t 2f Jok)'Pk

47p, Cos 0,[(fin3 + f3 n1) fJj(kr)(vPeC'1' vae"'")k 2 dk

+ f (/,w1#)2 JJ(kr)e-Z(k2/v) dkc

(27)

± sin .Y(f 2:n3 + f8 n2)j J,(kr)(ez v. ve--ý)*2 dk

+ fan 2(./p)2 fJi1(kr)e-'Pz(k 21VO dk]
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47rui 1  coso ~(fin3 +fins)rý' JI&kr):(e7v~ e-'O

-fina(&//)2f Jo(kr)e-'ýk Adkj - .s i na +f3- )r' (28)

*fJi(kr) (67" o- &"f)k'dk + fn3(w/#),2 Jo(kr)e 4'k dkj

Jr 4irpu, ' (1/2)[(flni - f 2 n2 ) cos 20 + (fin2 + f2n 1 ) sin 2,]

,j*f J1 (kr) { (k2 /v 0 )} - e&"v)}k2 dk (29)

- (2/r) J 2(kr) .e7P-e - vP. 'e-vI' }k'dk

47p,(2) -(1/2)[(f, n, - f2 n2) cos 20 + (f, n2 + f2 n1) sin 2q0I

- d (30):,f Jý(kr) (C"'• - e7".) VAd

4ro(2) =(1/2)[(fi + f2 n1 ) cos 2J - (fin, - f 2n2 ) sin 201

.[(2/r)- J(Jc) - v'e"'z)k' dk

[ + i~'/)
2 fJ1 ,(kr)e-"'(k2/vpi) dA

The corresponding expressions, for z < 0 may be obtained, by changing the sign

of P. and Pp and then reversing the sign of all terms.
These expressions have now been converted into the form of integrals of the

solutions of the elastic wave equations in cylindrical coordinates in the form given
by Sezawa (1931). Sezawa's cylindrical wave functions may be written in the
form

41rpu,"'(k) = cos n4[Fi°(z)kJ.-((kr) - (n/r)J4 (kr)fFi,(z) + Fanc(z)1]
(32)

+ sin n0[Fi•'(z)kJ._1 (kr) - (n/r)Jn(kr){Fn8 (z) + F2i'(z)}']

41rpu,() (k) = cosn'.F2' (z) J(kr) + sin noh.F2" (z) Jd,(kr) (33)

41rpuo(n)(k) = sin n0[Fic(z)kJ,- .1(•kr) - (n/r)J.(kr){F,`(z) + FA"(z)}]
(34)

-- cos n44Fa3'(z)kJ•-i(kr) - (n/r)J.(kr){PFi(z) + Fa"'(z)}]

iti
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The functions Fin(z) and, F 2'(z) can be written in the form

Fi'(z) = 2•n(z) - Z1'(z) (35)

F 2'(z) = k2Z2"(z) ý 21(z) (36)

where V and Z 2' are solutions of A

- 1= 0 (37)

-2n = 0 (38)

The function F3.(z) satisfies the same differential equation (38) as Z'(z).
We now take the origin of coordinates at the source with the +z axis pointing

vertically downward into the medium. Let the depth of the source be h, so that
the free surface is at z = -h. In the region above the source, - h < z < 0, both
upward and downward travelling waves exist and the appropriate solutions of
equations (37) and (38) are of the form

= Ae- + 4e

= An1e~ + A+,2e6%

Z2nc = Bonle' + B� 2e

ns= Ble- + Bn 2e(3

= Cnle"f + Cn 2e'
F n a 7..8 ,,z + -8 ~

F C-,'re "J-C.nf~ep

The values of "the coefficients of the terms in e"8 and e" may be determined by
identifying terms in the integrated solution

u =(n) f u,,")(k) dk (40)

with the corresponding terms in the counterparts of equations (23) through (31)

-for z < 0. The results of this are:

Ac2 = kf3n 3[2(w/a)2 - 301/2pý

B'o2  -3kf3na/2

C'0 = (f 2n, - fn 2) A1k/2 vP

A12 = k1(fins + f~n1) A12 = k'(f2n3 + fan 2)

Bl2 = flnav .+ fanl/k2/Vf B12 = f 2n2v# + f~n2k
2/Yi (41)

C2= f~na(W/,3)2 2l

Al 2 = (f2n2 - fln2) ,/2),,v A82 = - (f~n2 + f2n2) k8/2v,

B12 = (f 2n2 - fjn1 )k/2 B22 = - (fin2 + f 2n,)k/2

Cl2 = (f 2n2 - fnj 1) ck/20&vp C 22 = - (f ln2 + f2n,) . 2k/2#2Pf
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The coefficients A,,, etc. are then determined by the vanishing, of the stress
components Ti,, Tzr, T,0 at the free surface. These are

i ~T. = NA + 20uau/Oz

•.T,, = u(0%/ar + Oul/Oz), (42)

T, = (OUfiOz + Ou/.rO¢)½ where A +ul/r + u,/?X- + u•/rOl-- Ouf/Oz and X are the Lam6 elastic

constants..Setting fhese stress -components equal to zero at z = -h leads to' the%1 following, set. of equations

(1 - (A4ie"" + A4 2e~h) + v,(- fie" + B' e',ph) = 0

-(y - 1) ,le + h) - (e/k 2) (-,4/ký) h + A42e-Yh) = 0 (43)

-Ccnl + C',ýe-2 = 0

where y = 2(#k/c/). 2, and a similar sot for tlie coefficients -with superscript s. Solving
for A'n ,etc. we have

A, = [-g(k)A'.2e + 27(7 -_ l)j#Bn2e-('+÷#)hjtf(k),

B'n, = [{25'(y - !)•/k 2}Aine-('.+,)h - g(k)Bin2e- 2 ,]/f(k) (44)

n e n

where

f(gk) = (7, - I)l _ _/2

g(k) = (7 _ 1) 2 + y
2 paV/k

2

RADIATION PATTERN OF RAYLEIGH WAVES

The part of the displacement field due to Rayleigh waves is the contribution. to
the integral of equation (40) that arises from the singularity of the integrand at
the real root of f(k.) By a transformation of the path of integration in the complex k
plane (Ewing, Jardetsky, and Press 1957, pp 132-135) this reduces to the negative
of the residue at the pole, k = K, where f(K) = 0. This may be. obtained by mul-
tiplying the right hand sides of equations (32), (33), and (34) by - 7ri, replacing
the Bessel functions by the corresponding Hankel functions of the second kind,
H.(')(Kr), dropping those terms of F2., F2 , and FA that do not contain f(k) in the
denominator, and replacingf(k) byf'(K) in the denominator of the remaining terms.
At this point we shall also drop the "near-field" terms in (n/r)H.(2 )(kr), since

1i they are of order r1 and thus make a negligible contribution to the distant radia-

A,
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tion field in comparison with the leading terms which are of order r-1 2 . The re-
maining-significart. terms are then

4pu^!) =-ixHI.l1(Kr)[Gi"'(z)' cos no + Giee(z) sin no]
4u()0 - -ikK,(21) (Kr) [G2,(z) Cos n " + 02(z) sin no] (45)

Where the functions G(z) are derived from the functions F(z) by applying the
operations. described aboveý Using equations (35), (36),. (39), (4i), (44), together
w'it1h f(K) = ,. explicit expressions for the values, of these functions at the free
surface :(z = -h) are as follows:-

G10' = [3K'Yvf3n3/f'(K)][{ (Iy - 1)/y}ehP - 1 - 2cR 2/3a 2 e-•'1 (46)

G200 = ^vGO/(,y - 1) (47)

G?°= [2K'(7- 1)//(K)1
(48)

•[-{f 3n1 + fn3(1 -- 2/1,)e-h•P + (n" -- 1)Y(fn 3 + fana)e-v•/y]

G.8 = [2K'(y- 1)/f'(K)
(49)

[--{f 3n2 + f 2na(. - 2/y)e-"• + (Y - 1)(ffna + f8n2) e-hp/](

G2" = -yv.aGJ'/(^ - 1) (-50)

G21 = yv7/(3y - 1) (51)

G12' = [ryvP(fln1 - fana)/f'()-][{Q( - I)/}e-h~ -e-] (52)

= [icv#(fan2 + f2n,)/f'(K)J[{(' -- 1)/yje-hpp _ (53)
G•°= yVaGj 2°//(7 -- 1) (54:)

G2
2' = -yv.G/7 - 1) (55)

Replacingi the Hankel functions by their asymptotic approximations

H,(2)'(.r) -• (2/lrir)-2 exp (-ixr + (inir/2) + iir/4) (56)

the surface displacements reduce to

u, = A(K, r, h)e-C/ 4 [3if4ana (1 - 2c5
2/3a 2)D - (' - 1)/-Y)

"+ {2K(y, - 1)/ypp} cos,,[-- {fni +f'n3(1 - 2/1y)} + (-y - 1)(fina +fana)D/-v]
(57)

"+ (2K((- !)/7yl} sin,[-.ffn 2 +f 2 n3(1 - 2/1-)) + (Y - 1)(f243 +f3n2)D/'y]

"+ i[{(,y - 1)/,y) - Dl[(fin, - f2n2) cos: 20 + (fAna + f2n.) sin 20.] ]

U. = ij7o-Ur/K(7 - 1) (58)
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• • where

A A(K, r, h) = {I 'Kv/4'Pf'(.)}{2/xr1r}1: 2  exp (-iKr - hp) ('59)'

SD =xp h(P. - v) (160)

w/'I, phase velocity of Rayleigh-.aveS

In, interpreting the phase angles -of -the displacements in- terms of the direction
of motion, on the fault,, we note. that the normal vector, n,. may be: drawn. on ýeither

FIG. 1., Convention for relation between f and n vectors and fault displacement.

S~TABLE 1

VALUES OF fl, fi , fa , CORRESPONDING TO VARIOUS TYPES OF FAULTS

As f2 f3

F ~~~~ ~~~Type -_______ ________

Dip slip. Strike slip Dip slip Stike Dip. i Strike

Normal, right-lateral 01 --i cos& 0 sin a 0
Normal, left-lateral 0 1 cos 6 0 sin a 0
Reverse, right-lateral 0 -1 -cos 5 0 -sin a 0
Reverse, left-lateral 0 1 -cos a 0 -sin a 0

side of the fault. The. sign convention adopted in equation (5) then requires thatthe vectorf be interpreted as the direction of F on the same side of the fault as that

on which n is drawn. Since in the immediate neighborhood, of the source the direc-
tion of F is the same as that of the displacement, the relationships between f,

n,, and the directions of motion on the fault plane are those shown in figure 1. If
we choose the x, axis to be along the strike of the faultand the x2 axis in the diree-
tion of dip, with the directions chosen as shown in figure 2,, and let n be drawn on

Sthe hanging wall- side of the fault, the components of n are ni = 0, n 2 = sin B,
na = --cos B and the limiting values of the components of f for various types of
faults are those given in table 1.

DOUBLE COUPLE SOURCE

It must still be considered an open question whether the majority of earthquakes
are best represented by a single-couple source model or by a double-couple with,
zero resultant moment. To obtain the surface wave radiation pattern for the latter
case we note. from figure 1 that interchanging the vectors n and f produces a couple

"4,
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at right angles to. the. original couple with moment of opposite, sign. The appro-
priate solution for the double-couple source model may then be obtained from the
single-couple solution by interchanging corresponding, components of n and f
and adding the results to the original solution. The result is

u= 2A(K, r, h)e-"'4[3ifni(1I -' 2cen/3a)2D - (,y - 1)/)}ý

+ 2(v•/k) (D - 1){ (fln + fhni)ý cos ý -I- (fhn' + f3nQ) sin 4}' (61)

- i{D - (,y - 1),/,y}_ (fin', - f~n2) cos 2q + (fin2 + f2n,) sin 2411'

)-.xi
n

X3

FIG. 2. Orientation of axes with respect to fault.

Where we have made use of f(K) = 0 in deriving the coefficient of the terms in sin oand cos €. The relation between u•.and u, continues, of course, to be that given
by equation (58).

EFFECT OF FAULT PROPAGATION

Ben-Menahem (1961) has treated the effect on the surface wave radiation pat-
tern of horizontal propagation of the fault fracture at finite velocity over a finite
distance. Although the case of horizontal propagation of the fracture is probably
the most common one, his method can be readily extended to cover the general
case of an arbitrary direction of propagation. Let ý be the distance from the point
of initiation to the instantaneous position of the leading edge of the fracture meas-
ured in the direction of fracture propagation, and let v be the velocity of fracture
propagation. Let ro, zo, 0o be the cylindrical coordinates of the point of observa-
tion with. respect to the point of initiation. of the fracture, and r, z, € be the corre-
sponding coordinates with respect to the instantaneous position of the leading edge
of the fracture. Then, following Ben-Menahem we may write

u(ro, zo ,O) )= b u(r, z, 0) exp {i&.(t -- s/v) df} (62)
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where b is the length of the fault, u(ro, 0o, 0 o) stands for any one of the displace-
ment components, and u(r, z, 0) is any one of the previously derived expressions
for a stationary point source. Let, (I,, 12, 13,, be the Cartesian components of a
unit vector in the direction of fault propagation. Physically 1 must be normal to
n so that l,,-n = 0, but otherwise, its direction is unrestricted., Then -to terms of the
first order in W We- have

r = ro -t(/h cos 0 + 12 sin 0) + O(e2)

= zo V13 (63)

= • + (w/r) (l1 sin¢ - !cos,) + 0o(e)

"Now consider the azimuth dependent factor in u(r, z, 0),. This contains terms of
the form cos no and sin no and we have

cos n4= cos noo + (4 - (ho) d cos nCo/d¢o + ...

= cos noo - (ý/r) (l1 sin 0 - 12 cos ¢)n sin noo, + Q[(ý/r)2 ]

with a similar expression for sin no. Thus if we consider the radiation pattern at
distances such that r >> b, so that terms of order ý/r are negligible, we may treat
the azimuthal terms in the integrand as constants in carrying out the integration
in equation (62). Similarly for the radial amplitude factor, r-'1 , we have

r r127= ro1 2 + (r - ro) droi" 2/dro +

= ro:0-[1 + (ý/2ro),(lj cos q + 12 sin -) + O{ (ý/ro) 2j]

and this factor may also be treated as a constant to the same order of approxima-
tion. Therefore the only factors that need' to be considered in evaluating the integral
in equation (62) are the exponential radial and depth factors. Noting that at the
free surface z = h and zo = -h 0 , so that h = h0 + ýlh, the only factors that
that need be retained under the integral are those of the form
f b ,

L exp (-iir -hv - i./v) d = exp( -iro - ho vp)

(64)

"f exp [iý(lh cos 06 + 12 sin 0o) -- la - iwt/vi dý

A similar expression with a replacing j3 also occurs through the quantity D that
appears in the coefficients of the azimuthal terms in equations (57)ý and (61).
Apart from a small change in the relative amplitudes of the azimuthal terms due
to this quantity, the main effect of source propagation is to multiply the expressions
for stationary sources by the factor

P(K, 4 F) = b' ea' d= (e' - 1)/ab (65)
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where

a = iK(l, cos + 12 sin cv - cR/v) - l2Jvp (66)

The subscript indicating the origin, at the initial point of fracture has now been

dropped., In the case of horizontal propagation of the fault, 1, 0, and if we, set

X = (Kb/2)[{(cv/v) -- 4 cos - 12 sin •J (67):

equation (65) reduces to the form given by Ben-Menahem

P(K, €) = (sin X/X) exp (- iX). (68)

INITIAL PHASE

The phase angles of the displacements uand u. obtained by setting r 0 in the
expressions developed above are the initial phases in the sense of the term employed
by Aki (1960 a, b, c) and Brune (1961, 1962). They do not, of course, represent
the actual phases of the ground motion near the epicenter, since they do not in-
dude the near-field terms that make a negligible contribution at large distances,
but are the dominant terms at short distances. The initial phase of the far-field
terms does, however, have physical significance since it is the phase angle that
one obtains by applying the phase compensation methods of Aki or Brune to ob-
served data obtained at large distances.

Since the expressions given above refer to a source with sinusoidal time de-
pendence, an additional initial phase factor is necessary if these expressions are to
be applied to a particular Fourier component of a nonsinusoidal wave form. If the
time dependence of the force couple representing the source is F(t), with a Fourier
transform

f(W) = F(t)e-'w'dt

the correction that should be added to the initial phase is arg [f(w) ]. In particular,
if F(t) is a unit step function, f(w) = 1/iw, and arg [f(w)] = -- r/2 shoul. be
added to the initial phase of all components.

In the case of Rayleigh waves on a homogeneous medium the quantity vp is
real and positive. From the definition of f(k) and making use of the fact that K

is the value of k such that f(K) = 0, it may be shown that

f,(,) = -2,y[ 2,'(1 - #2/a2) + (1/7,) - 2]/K(,y - 1)' (69)

Since 'y = 2#/cR, and ci < # for all homogeneous media, y > 2. Also # 2/a2'=
,'/(G, + 2k),. which is necessarily <½. Hence A(1 - //a 2) > 2 and the term in

brackets is a positive real quantity. Therefore f'(K) is a negative real quantity and
the factor A (K, r, h) in equation (57) has a phase angle of r.

For direct comparison of initial phase angles computed from equations (57),

4a
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(58), and (61) with the initial phase in, the sense of Brune, two additional correc-
tions are needed. Brune takes the positive sense of the z-axis as directed upward
instead of downward in accordance with the convention that we have used in the
present paper. This corresponds to a, change of L.,r in the phase angle assigned -to
u u. He also makes a correctionof -j-/4 to remove- the phase advance at the source.
In ,the present theory this. phase, advance is represented by the factor exp (ri/4)
that -occurs in the asymptotic expression for the Hankel, function, equation (56)
and must be removed for consistency with Brune's definition.

In Summary, if we let k'r(O) be the phase angle of the factor in brackets in equa-
tions- (57) or (61) that expresses the azimuthal dependence of the initial phase of
u,, the phase angle corrections that must be added to produce Brune's initial
phase,. B,, -are as follows:

TABLE 2
SUMMARY OF ILLUSTRATIVE' CASES

H2 Na f, f2 f, Single-couple Double-couple

90 1.0 0:.0 --1.0 0.0 '0.0 Fig. 3 Identical with fig. 3
85 0.9962 -0.,0872 -1.0, 0.0 0.0 Fig. 4
80 0.9848 -0.1736 -1.0 0.0 0.0 Fig. 5
70 0.9397 -0.3420 -1.0 0.0 0.0 Fig.6 -6
45 0.7071 -0.7071 -1..0 0.0 0.0 Fig. 7 Identical with fig. 3 with

q scale reduced by 0.7071
0 0.0 -1.0' -1.0, 0.,0 0.0 Fig. 8 Amplitude = 0

90 1.0 0.0 -0.7071 0.0 0.7071 Fig. 11 Identical with, fig. 3 with
scale reduced by 0.7071

90 1.0 .0.0 0.0 0.0 1.0 Fig. 12 Amplitude -= 0
45 0.7071 -0.7071 -0.7071 0.5 0.5 Fig. 13 fig. 14
45 0.7071 -0.7071 0 0.7071 0. 7071 Fig. 15 fig. 16

Phase correction to
be added to •,()

1) exp (-7ri/4) factor in eqs. (57) and (61) -r/4
2) Negativesign of f'(K) in A(K, 0, h)
3) Step source function -7/2

4) Conversion to vertical component (u, iu+ur/2

5) Change to opposite sign convention of z-axis =±:q
6) Phase advance at source -/4

Net correction -r/2

so that IWBO) = 41(4) - 7r/2

REPRESENTATIVE EXAmPLES

Radiation patterns have been computed for a number of illustrative cases and
are summarized in table 2. The strike of the fault plane is taken as the reference
direction (0 = 0) so that ni = 0 in all cases. The direction of dip is down to the
right and all figures refer to the case of zero focal depth (D = 1.0).
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FIG. 5. Right-lateral, strike-slip motion. on a fault dipping 800. Single~couple, source model.
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FIG. 7. Right-lateral, strike-slip motion on a fault dipping 45'. Single-couple source mode
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SINGLE COUPLE, HORIZONTAL. FAULTFxa. . Horizontal fault, upper side displaced indirection. 0 180W Single-couple source model.



RADIATION PATTERN OF RAYLEIGH WAVES 637

0

S -

270-- -90

/ / I I \

S~1.0

f/

PARAMETER: b/X
FiG. 9. Amplitude of fault propagation factor for horizontal propagation at v = 8. X _ b.
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FIG. 10. Amplitude of fault propagation factor for horizontal propagation at v = X. ) < b.

The effect of fault dip on the radiation pattern for the single-couple source model
of a right-hand, strike-slip fault is illustrated in figures 3 through 8, which show
polar plots of relative amplitude and initial phase (Brune convention with step
function source) as functions of azimuth. It will be noted that the quadrantal
symmetry with two nodal axes that exists in the case of a vertical fault evolves

C
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rather rapidly into a two lobed pattern wvith a single nodal axis as the dip diec(reasesý.
These figure,. refer to the ease of a stationary souirce. To visu:alize the effect of
fault propagation the amp~litudes must be miultiplied by the lBen-AMcnahein propa-
tion factor, which is shown as at function of azimutth in figures 9 and 10 for various
ratios of fault length, 1), to wave-length, X. The fault p~ropagation velocity is taken
to be equal to the shear wave velocity, so that c/,'= .919-4, andI horizontal propaga-
tion in the 0 0 direction is assumned. For b/X < 0,125 the modification of the
stationary radiation pattern for amplitudes is small (<101/. For b/X > .-521,

0

270- -90

180

SINGLE COUPLE, AT. LAT., NORM~AL, 45* PLUNGE
Fio. 11. Amplittude and initial phase (B~rune) radiation pattern for 45' plunging otimt ion Oýi

vertical fault. Single-couple source model.

addi tional nodal a.xes due to fault propagation are introduced, and as IiX becomunes
>>I the radiation bccometi increasiingly concentrated into two beanws at eos q)
c/V, or = - 23.16*. For the (louble-couple source model the l(tiylcigli wavc riudiai
tion pattern is identical with the single-couple modlel in the case of strike ONli or1
vertical fault. H-owever, for dlips less than 9f0' trhe 111J ('0tece;Ae Soujr(ce (-0jut iuu(."
to give the same four-lobed p~attern, the only difference heiný, a dccrotow I !,h

soueiplitude in prop~ortion to the sine of the dpj an~gle. At, zero dip t ht, amnplit i
becomes zero (for zero focal dlepth only).

Figures It andu 12 show the p~atternis for the modogl to1 jiesoui~I
vertical fault with the direction of mnotioni phiiiging .1r), 1111 90" (dip .ýlip) ro Ipc-
tivcly. The effect is the Ranw asq chnnging the dip of it strilw slip fauhl cet-cpi Jcýt.
the pattern is~ rotated through FirY'. 1in these eases also~ tile paittert fto Ia' dotilDl
couple. source remains unchanged, but the amplitude deere(!'ý,(s nw, tlie Jll2 il -
cr-eases, and hevomeA zero for pti-c dip-slip motion.
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FIG. 12. Dip-slip motion on a vertical fault. Single-couple source model.
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FIG. 13. Right-lateral, normal motion on a fault of 450 dip. Single-couple source model.,
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Figure 13 shows the single-couple radiation pattern for 45' dip angle and dis-
placement vector making an, angle of 450 with the horizontal in the fault plane.
Figure 14 shows the' corresponding patterns for the double-coupie; source. Although
the amplitude patterns appear similar, the double-couple case actually has a pair
of minor lobes, too small to be shown in the figure, between the two major lobes.
The differences in initial phase distribution would distinguish between these two
cases.

The corresponding comparison between single and double-couple sources for dip-
slip motion on a fault of 450 dip is shown in figures 15 and 16. In this case also

I80

DOUBLE COUPLE f, O0,ft `f, .:707o

FIG. 16. Double-couple source model. Orientation parameters as in figure 15.

the amplitude patterns are similar, but the initial phase patterns would distinguish
between the two source models.
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